
S-30

WE1S Chomp

Chomp is a set of Python tools designed to
find and collect text from webpages on
specified sites that contain search terms of
interest. Its function is to build a useful
corpus from born-digital sources focused on
particular areas of research. Unlike other
web scraping tools, Chomp is designed first
and foremost to take a12 Sept. wide
sweep--working at scale and across a
variety of different platforms to gather
material for topic modelling and other forms
of broad statistical analysis and “distant
reading.”

There are four key tools in the Chomp
package: the Selenium browser interface,
the Google Custom Search Engine (CSE)
interface, the Web content scraper, and the
Wordpress API interface. All of these are
easily customizable and run through a set of
Python notebooks in concert with other
WE1S collection tools.

The Selenium browser interface is the
means by which Chomp accesses the Web.
Using purely programmatic Web tools like
the Requests module can be faster, but, for
some purposes, unreliable. Selenium
processes the Web through an actual
browser window, allowing JavaScript to run,
ads to display, redirects to occur, etc. Since
many of the pages that interest WE1S rely
on these features to publish content,
Selenium has proven to be a necessary
addition to Chomp.

The Google CSE interface is how Chomp
finds Web pages to scrape. Chomp can also
function by way of the Google search page
itself, but this requires periodic human
intervention to solve CAPTCHAs. Using the
CSE API instead limits us to a certain

number of results per day, as per Google’s
pricing structure, but has the advantage of
making the process fully automated.

The Web content scraper gathers content
from Web pages by making both basic and
customizable assumptions about how
content is typically arranged within a given
page’s DOM, which it navigates by way of
the BeautifulSoup module. By default, the
scraper looks for anything within a <p> tag
over 75 characters long:

for tag in [t for t in
 soup.find_all(tag_type)
 if len(t.text) > length]:
content += " " + str(tag.text)

This setup has proven successful for our
purposes, but users are encouraged to take
a sample of their results and adjust the tag
as necessary for their own projects.

The Wordpress API interface acts in place
of the Web content scraper for sites that run
the Wordpress CMS, and that allow
back-end API access. This is easier and
generally more thorough than finding pages
through Google and does not contribute to
the CSE query limit. Chomp pings each
Website in its search list first to see whether
or not it has an accessible Wordpress API in
order to maximize this advantage.

Further Information:

* Selenium API

* Google CSE API

* Wordpress API

WE1S resources:
* Chomp on GitHub:
https://github.com/seangilleran/we1s_chomp

7 July 2020; rev. 12 Sept. 2020 (Sean Gilleran)

https://github.com/seangilleran/we1s_chomp
https://selenium-python.readthedocs.io/api.html
https://requests.readthedocs.io/en/master/
https://developers.google.com/custom-search/v1/using_rest#query-params
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://developer.wordpress.org/rest-api/
https://selenium-python.readthedocs.io/api.html
https://developers.google.com/custom-search/v1/using_rest#query-params
https://developer.wordpress.org/rest-api/
https://github.com/seangilleran/we1s_chomp

