Bibliography – Topic Model Labeling

Sorted by Tags:
Humanities (all)
Global Humanities | History of Humanities | Humanities Advocacy | Humanities Statistics | Humanities Surveys | Public Humanities | Social Groups and the Humanities | Value of the Humanities | Humanities and Economic Value
Humanities Organizations: Humanities Councils (U.S.) | Government Agencies | Foundations | Scholarly Associations
Humanities in: Asia (Eastern) | Asia (Southern) | Australasia | Europe | Latin America | United Kingdom | United States
Journalism & Media (all)
Lists of News Sources | Databases with News Archives | Journalism Statistics | Journalism Organizations | Non-profit or NGO Journalism Organizations | Media Bias | Press Freedom | Social Media | World & International
Corpus Collection (all)
Corpus Representativeness | Comparison Paradigms for WE1S Corpus: Archives | Canons | Corpus Linguistics | Editions
Data Science & Machine Learning (see also Topic Modeling) (all)
Artificial Intelligence | Big Data | Data Mining | Data Visualization (see also Topic Model Visualizations) | Hierarchical Clustering | Interpretation & Interpretability (see also Topic Model Interpretation) | Mapping | Natural Language Processing | Network Analysis | Sentiment Analysis | Statistical Methods | Text Analysis (see also Topic Modeling)Wikification | Word Embedding & Vector Semantics
Digital Humanities (all) (selected resources related to WE1S methods or issues; some items also included under "Data Science and Machine Learning" and "Topic Modeling")
Cultural & Social Approaches in DH | Distant Reading | Topic Modeling in DH

Yoo, Alex. Automatic Topic Labeling in 2018: History and Trends, 2018. https://medium.com/datadriveninvestor/automatic-topic-labeling-in-2018-history-and-trends-29c128cec17. Cite
Bhatia, Shraey, Jey Han Lau, and Timothy Baldwin. “Automatic Labelling of Topics with Neural Embeddings.” ArXiv:1612.05340 [Cs], 2016. http://arxiv.org/abs/1612.05340. Cite
Boyd-Graber, Jordan, David Mimno, and David Newman. “Care and Feeding of Topic Models: Problems, Diagnostics, and Improvements.” Handbook of Mixed Membership Models and Their Applications, 2014. https://doi.org/10.1201/b17520-21. Cite
Aletras, Nikolaos, and Mark Stevenson. “Labelling Topics Using Unsupervised Graph-Based Methods.” In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), 631–636. Baltimore, Maryland: Association for Computational Linguistics, 2014. https://doi.org/10.3115/v1/P14-2103. Cite
Lau, Jey Han, Karl Grieser, David Newman, and Timothy Baldwin. “Automatic Labelling of Topic Models.” In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies - Volume 1, 1536–1545. HLT ’11. Stroudsburg, PA, USA: Association for Computational Linguistics, 2011. http://dl.acm.org/citation.cfm?id=2002472.2002658. Cite
Ramage, Daniel, David Hall, Ramesh Nallapati, and Christopher D. Manning. “Labeled LDA: A Supervised Topic Model for Credit Attribution in Multi-Labeled Corpora.” In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 1 - Volume 1, 248–256. EMNLP ’09. Stroudsburg, PA, USA: Association for Computational Linguistics, 2009. http://dl.acm.org/citation.cfm?id=1699510.1699543. Cite
Mei, Qiaozhu, Xuehua Shen, and ChengXiang Zhai. “Automatic Labeling of Multinomial Topic Models.” In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’07, 490. San Jose, California, USA: ACM Press, 2007. https://doi.org/10.1145/1281192.1281246. Cite